Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Neurosci ; 15: 759219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955720

RESUMO

The ability to perceive the world is not merely a passive process but depends on sensorimotor loops and interactions that guide and actively bias our sensory systems. Understanding which and how cognitive processes participate in this active sensing is still an open question. In this context, the auditory system presents itself as an attractive model for this purpose as it features an efferent control network that projects from the cortex to subcortical nuclei and even to the sensory epithelium itself. This efferent system can regulate the cochlear amplifier sensitivity through medial olivocochlear (MOC) neurons located in the brainstem. The ability to suppress irrelevant sounds during selective attention to visual stimuli is one of the functions that have been attributed to this system. MOC neurons are also directly activated by sounds through a brainstem reflex circuit, a response linked to the ability to suppress auditory stimuli during visual attention. Human studies have suggested that MOC neurons are also recruited by other cognitive functions, such as working memory and predictability. The aim of this research was to explore whether cognitive processes related to delayed responses in a visual discrimination task were associated with MOC function. In this behavioral condition, chinchillas held their responses for more than 2.5 s after visual stimulus offset, with and without auditory distractors, and the accuracy of these responses was correlated with the magnitude of the MOC reflex. We found that the animals' performance decreased in presence of auditory distractors and that the results observed in MOC reflex could predict this performance. The individual MOC strength correlated with behavioral performance during delayed responses with auditory distractors, but not without them. These results in chinchillas, suggest that MOC neurons are also recruited by other cognitive functions, such as working memory.

3.
Front Neurosci ; 15: 704805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539335

RESUMO

Age-related hearing loss (ARHL) is a public health problem that has been associated with negative health outcomes ranging from increased frailty to an elevated risk of developing dementia. Significant gaps remain in our knowledge of the underlying central neural mechanisms, especially those related to the efferent auditory pathways. Thus, the aim of this study was to quantify and compare age-related alterations in the cholinergic olivocochlear efferent auditory neurons. We assessed, in young-adult and aged CBA mice, the number of cholinergic olivocochlear neurons, auditory brainstem response (ABR) thresholds in silence and in presence of background noise, and the expression of excitatory and inhibitory proteins in the ventral nucleus of the trapezoid body (VNTB) and in the lateral superior olive (LSO). In association with aging, we found a significant decrease in the number of medial olivocochlear (MOC) cholinergic neurons together with changes in the ratio of excitatory and inhibitory proteins in the VNTB. Furthermore, in old mice we identified a correlation between the number of MOC neurons and ABR thresholds in the presence of background noise. In contrast, the alterations observed in the lateral olivocochlear (LOC) system were less significant. The decrease in the number of LOC cells associated with aging was 2.7-fold lower than in MOC and in the absence of changes in the expression of excitatory and inhibitory proteins in the LSO. These differences suggest that aging alters the medial and lateral olivocochlear efferent pathways in a differential manner and that the changes observed may account for some of the symptoms seen in ARHL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...